New Solution of Cubic Spline Interpolation Function
نویسندگان
چکیده
منابع مشابه
Monotonic Cubic Spline Interpolation
This paper describes the use of cubic splines for interpolating monotonic data sets. Interpolating cubic splines are popular for fitting data because they use low-order polynomials and have C2 continuity, a property that permits them to satisfy a desirable smoothness constraint. Unfortunately, that same constraint often violates another desirable property: monotonicity. The goal of this work is...
متن کاملOn a Generalization of Cubic Spline Interpolation
Based on analysis of basic cubic spline interpolation, the clamped cubic spline interpolation is generalized in this paper. The methods are presented on the condition that the first derivative and second derivative of arbitrary node are given. The Clamped spline and Curvature-adjusted cubic spline are also generalized. The methods are presented on the condition that the first derivatives of arb...
متن کاملCubic spline Numerov type approach for solution of Helmholtz equation
We have developed a three level implicit method for solution of the Helmholtz equation. Using the cubic spline in space and finite difference in time directions. The approach has been modied to drive Numerov type nite difference method. The method yield the tri-diagonal linear system of algebraic equations which can be solved by using a tri-diagonal solver. Stability and error estimation of the...
متن کاملCubic Spline Coalescence Fractal Interpolation through Moments
This paper generalizes the classical cubic spline with the construction of the cubic spline coalescence hidden variable fractal interpolation function (CHFIF) through its moments, i.e. its second derivative at the mesh points. The second derivative of a cubic spline CHFIF is a typical fractal function that is self-affine or non-self-affine depending on the parameters of the generalized iterated...
متن کاملGeneralized Cubic Spline Fractal Interpolation Functions
We construct a generalized Cr-Fractal Interpolation Function (Cr-FIF) f by prescribing any combination of r values of the derivatives f (k), k = 1, 2, . . . , r, at boundary points of the interval I = [x0, xN ]. Our approach to construction settles several questions of Barnsley and Harrington [J. Approx Theory, 57 (1989), pp. 14–34] when construction is not restricted to prescribing the values ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pure Mathematics
سال: 2013
ISSN: 2160-7583,2160-7605
DOI: 10.12677/pm.2013.36055